At large r the vector potential associated with a Hertzian dipole is given by

$$
\underline{A}(\underline{r}, t)=\frac{\mu_{o} I_{o}}{4 \pi r} e^{j \omega(t-r / c)} d \underline{l}
$$

which is equivalent to

$$
\underline{A}(\underline{r}, t)=\frac{\mu_{o} I_{o}}{4 \pi r} e^{j \omega(t-r / c)}[\cos \hat{\theta} \underline{\hat{r}}-\sin \theta \underline{\hat{\theta}}] d l
$$

Demonstrate that this leads to the results given in lectures for $\underline{B}=\nabla \times \underline{A}$ by using the spherical coordinate form of the expression for $\nabla \times \underline{A}$ i.e.

$$
\underline{B}=\nabla \times \underline{A}=\frac{1}{r^{2} \sin \theta}\left|\begin{array}{ccc}
\underline{r} & r \underline{\hat{\theta}} & r \sin \theta \underline{\hat{\phi}} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\
A_{r} & r A_{\theta} & r \sin \theta A_{\phi}
\end{array}\right|
$$

