Q24 The far-field result obtained in lectures for the Hertzian dipole in free space is

$$
\underline{B}(\underline{r}, t) \approx j \frac{\mu_{o} I_{o}}{2 \lambda r} d l \sin \theta e^{j \omega(t-r / c)} \hat{\phi}=B_{\phi} \hat{\phi}
$$

which has a ϕ component only.
By using this result together with the appropriate Maxwell equation prove that the corresponding form of \underline{E}, as given in lectures, is

$$
\underline{E}(\underline{r}, t) \approx j \frac{c \mu_{o} I_{o}}{2 \lambda r} d l \sin \theta e^{j \omega(t-r c)} \underline{\hat{\theta}}
$$

which has a θ component only.
In the spherical polar coordinate system

$$
\nabla \times \underline{C}=\frac{1}{r^{2} \sin \theta}\left|\begin{array}{ccc}
\hat{r} & r \underline{\hat{\theta}} & r \sin \theta \hat{\phi} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\
C_{r} & r C_{\theta} & r \sin \theta C_{\phi}
\end{array}\right|
$$

Q25 Imagine that an object radiates electromagnetic waves with a power distribution given by

$$
\underline{S}_{a v}(r, \theta)=\frac{C I_{o}^{2}}{r^{2}} \sin \theta \hat{\underline{r}}
$$

where $C=5 \Omega$. What is the value of the radiation resistance for this object? What is the beam width? What is the value of the directivity?

Q26 \qquad And now, a rather different question.

A superconductor is a material which offers no dc resistance and satisfies the following relationship connecting current density and magnetic field under steadystate (no variation with time) conditions:

$$
\nabla \times \underline{J}=-\frac{n q^{2}}{M} \underline{B}
$$

Show that this leads to the following equation for \underline{B} :

$$
\nabla^{2} \underline{B}=\frac{\mu_{o} n q^{2}}{M} \underline{B}
$$

Show that $B_{x}=0, B_{y}=0, B_{z}(x)=B_{o} e^{-x / \lambda}$ is a consistent solution for \underline{B} and find an expression for λ. B_{o} is a constant equal to the strength of the B - field at the surface of the superconductor. (The magnetic field within the superconductor thus decays exponentially from the surface value.)

Obtain an expression for \underline{J} involving B_{0} and λ.
Given the values below find the numerical value of the "penetration depth", λ.
$\mathrm{M}=2 \mathrm{x}$ electron mass, $\mathrm{q}=2 \times$ electron charge, n (concentration) $=5 \times 10^{28} \mathrm{~m}^{-3}$

