Level 2 Electromagnetism Example Questions - Sheet 4 2002/3

Q14 A plane electromagnetic wave in free space has an associated electric field amplitude of $E_{\mathrm{o}}=1.5 \times 10^{-3} \mathrm{Vm}^{-1}$. What is the amplitude of the associated H - field and what is the value of $S_{\text {ave }}$ for this wave?

Q15 By considering an imaginary smaller cylinder with radius r concentric with a larger air-filled cylindrical solenoid (within which \underline{B} and hence \underline{H} are spatially uniform but changing with time) prove that:

$$
\int_{\text {sufface }} \underline{S} \cdot d \underline{a}=-\frac{\partial W}{\partial t}
$$

where $\underline{S}=\underline{E} \times \underline{H}$ is Poynting's vector, W $=\left(\mu_{o} H^{2} / 2\right) \times$ volume is the energy associated with the presence of the magnetic field within the imaginary cylinder and the surface integral is over the entire surface of the imaginary cylinder.
[Hint: begin by using Maxwell's second equation to show that $E=-\left(\mu_{o} r / 2\right) \partial H / \partial t$ tangential to the main surface of the cylinder.]

Q16 A coaxial cable is composed of a long straight metallic wire of radius a surrounded by a concentric cylindrical metallic sheath of inner radius b with air in between. An electromagnetic wave travelling within the cable has electric and magnetic fields given by:

$$
\underline{E}=\frac{V e^{j(\omega t-k z)}}{r \ln (b / a)} \hat{\underline{r}} \quad, \quad \underline{B}=\frac{V e^{j(\omega t-k z)}}{r c \ln (b / a)} \underline{\hat{\phi}}
$$

where $\underline{\hat{r}}$ and $\underline{\hat{\phi}}$ are unit vectors of the cylindrical coordinate system used to describe this situation and z is the direction of propagation, along the length of the cable. V is a real constant.

Sketch the pattern of the \underline{E} and \underline{B} fields at the time $t=0$ in the plane $\mathrm{z}=0$ (the plane perpendicular to the axis of the wire).

By integrating over the cross section of the cable in the air-filled region obtain an expression for the time-averaged power flow along the coaxial cable.

Q17 Beginning with the boundary conditions

$$
\begin{align*}
& E_{O I}+E_{O R}=E_{O T} \\
& H_{O I} \cos \theta_{I}-H_{O R} \cos \theta_{I}=H_{O T} \cos \theta_{T}
\end{align*}
$$

with the electric field polarised normal to the plane of incidence, prove that

$$
\frac{H_{O R}}{H_{O I}}=\frac{?}{\frac{n_{1}}{\mu_{1}} \cos \theta_{I}+\frac{n_{2}}{\mu_{2}} \cos \theta_{T}}, \frac{H_{O T}}{H_{O I}}=\frac{?}{\frac{n_{1}}{\mu_{1}} \cos \theta_{I}+\frac{n_{2}}{\mu_{2}} \cos \theta_{T}}
$$

Q18 Two non-conducting LIH media have identical permittivities but different permeabilities. By making use of a Fresnel equation with E polarised normal to the plane of incidence prove that there is no reflected wave if $\tan \theta_{I}=n_{2} / n_{1}$.
[This is a magnetic material analogue of the standard Brewster situation for dielectric materials.]

