Level 2 Electromagnetism Example Questions 2002/3 - Sheet 2

Q4 For a standard plane EM wave in free space with
$\underline{E}=\underline{E}_{0} e^{j(\omega t-\underline{k} \cdot \underline{r})}=\left(\begin{array}{l}E_{0 x} \\ E_{0 y} \\ E_{0 z}\end{array}\right) e^{j\left(\omega t-k_{x} x-k_{y} y-k_{z} z\right)}$ and $\underline{B}=\underline{B}_{0} e^{j(\omega t-\underline{k} \cdot \underline{v})}=\left(\begin{array}{c}B_{0 x} \\ B_{0 y} \\ B_{0 z}\end{array}\right) e^{j\left(\omega t-k_{x} x-k_{y} y-k_{z} z\right)}$
prove that $\nabla \cdot \underline{E}=0$ and $\nabla \cdot \underline{B}=0$ can only be always true provided that \underline{E} and \underline{B} are perpendicular to the direction of propagation given by \underline{k}.

Q5 a) Prove (by using the appropriate Maxwell equation) that for a plane electromagnetic wave in free space with \underline{E} as in Q 4 that $\underline{B}=\frac{\underline{k} \times \underline{E}}{\omega}$.
b) Prove (by using the appropriate Maxwell equation) that for a plane electromagnetic wave in free space with \underline{B} as in Q 4 that $\underline{E}=\frac{\omega}{k^{2}} \underline{B} \times \underline{k}$.

Q6 A plane EM wave as in Q4 has \underline{k} in the $\left(\begin{array}{l}+1 \\ -2 \\ +3\end{array}\right)$ direction.
a) If $\underline{E}_{o}=\left(\begin{array}{c}-2 \\ -1 \\ 0\end{array}\right) \mathrm{Vm}^{-1}$ what is \underline{B}_{o} ?
b) If $\underline{B}_{o}=\left(\begin{array}{c}-2 \\ -1 \\ 0\end{array}\right) \mathrm{T}$ what is \underline{E}_{o} ?
c) If the frequency of the wave is $10^{6} \mathrm{~Hz}$ what are the corresponding \underline{k} values for the situations a) and b) above?

Q7 When a particular uniform electric field is applied to a sample of diamond the induced polarisation is $P_{o}=1.5 \times 10^{-7} \mathrm{Cm}^{-2}$.
a) Calculate the number of carbon atoms per m^{3} in diamond given the information below.
b) Calculate the average induced dipole moment per carbon atom.
c) Estimate the average separation between the centres of +ve/-ve charge (ie the carbon nucleus and surrounding electron charge cloud) in the diamond.
d) If $P=P_{o} \sin (\omega t)$ as a result of an alternating electric field evaluate the peak value of the resultant polarisation current density, J_{b}, at a frequency of $10^{12} \mathrm{~Hz}$.

Information: The density of diamond is $3500 \mathrm{kgm}^{-3}$.
1 kmole of carbon has a mass of 12 kg .
Avogadro's constant is $6.0 \times 10^{26} \mathrm{kmol}^{-1}$.
The atomic number of carbon is 6 .
Q8 The polarisation at the surface of a spherical object of radius R centred at the origin is $\underline{P}=\mathrm{C}(x \hat{\hat{\mathrm{i}}}+y \underline{\mathrm{j}}+z \underline{\hat{\mathrm{k}}})$ where C is a constant. What is the value of the total charge required within the volume of the sphere in order to ensure that it has no net charge?

