Level 2 Electromagnetism Example Questions 2002/3 – Sheet 2

Q4 For a standard plane EM wave in free space with

$$\underline{E} = \underline{E}_{0}e^{j(\omega t - \underline{k} \cdot \underline{r})} = \begin{pmatrix} E_{0x} \\ E_{0y} \\ E_{0z} \end{pmatrix} e^{j(\omega t - k_{x}x - k_{y}y - k_{z}z)} \text{ and } \underline{B} = \underline{B}_{0}e^{j(\omega t - \underline{k} \cdot \underline{r})} = \begin{pmatrix} B_{0x} \\ B_{0y} \\ B_{0z} \end{pmatrix} e^{j(\omega t - k_{x}x - k_{y}y - k_{z}z)}$$

prove that $\nabla \cdot \underline{E} = 0$ and $\nabla \cdot \underline{B} = 0$ can only be always true provided that \underline{E} and \underline{B} are perpendicular to the direction of propagation given by \underline{k} .

- Q5 a) Prove (by using the appropriate Maxwell equation) that for a plane electromagnetic wave in free space with \underline{E} as in Q4 that $\underline{B} = \frac{\underline{k} \times \underline{E}}{\omega}$.
 - b) Prove (by using the appropriate Maxwell equation) that for a plane electromagnetic wave in free space with <u>B</u> as in Q4 that $\underline{E} = \frac{\omega}{k^2} \underline{B} \times \underline{k}$.

Q6 A plane EM wave as in Q4 has
$$\underline{k}$$
 in the $\begin{pmatrix} +1 \\ -2 \\ +3 \end{pmatrix}$ direction.

a) If
$$\underline{E}_o = \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$$
 Vm⁻¹ what is \underline{B}_o ?
b) If $\underline{B}_o = \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$ T what is \underline{E}_o ?

- c) If the frequency of the wave is 10^6 Hz what are the corresponding <u>k</u> values for the situations a) and b) above?
- Q7 When a particular uniform electric field is applied to a sample of diamond the induced polarisation is $P_o = 1.5 \times 10^{-7} \text{ Cm}^{-2}$.
 - a) Calculate the number of carbon atoms per m³ in diamond given the information below.
 - b) Calculate the average induced dipole moment per carbon atom.
 - c) Estimate the average separation between the centres of +ve/-ve charge (ie the carbon nucleus and surrounding electron charge cloud) in the diamond.
 - d) If $P = P_o \sin(\omega t)$ as a result of an alternating electric field evaluate the peak value of the resultant polarisation current density, J_b , at a frequency of 10^{12} Hz.

Information: The density of diamond is 3500 kgm⁻³. 1 kmole of carbon has a mass of 12 kg. Avogadro's constant is 6.0 x 10²⁶ kmol⁻¹. The atomic number of carbon is 6.

Q8 The polarisation at the surface of a spherical object of radius *R* centred at the origin is $\underline{P} = C(x\hat{\underline{i}} + y\hat{\underline{j}} + z\hat{\underline{k}})$ where C is a constant. What is the value of the total charge required within the volume of the sphere in order to ensure that it has no net charge?