Answer to Electromagnetism Example Question 9

Now $\nabla \times \underline{B}=\mu \underline{J}+\mu \varepsilon \frac{\partial \underline{E}}{\partial t}$

$$
\begin{aligned}
& =\mu \sigma \underline{E}+\mu \varepsilon \frac{\partial \underline{E}}{\partial t} \\
& =\mu \sigma \underline{E}+i \omega \mu \underline{E}
\end{aligned}
$$

Although \underline{k} is now complex we still have the result that $\nabla \times \underline{B}=-i \underline{k} \times \underline{B}$.
Therefore, $-i \underline{k} \times \underline{B}=(\mu \sigma+i \omega \mu \varepsilon) \underline{E}$

$$
\text { or } \quad \underline{E}=\frac{-i \underline{k} \times \underline{B}}{(\mu \sigma+i \omega \mu \varepsilon)}
$$

Multiplying top and bottom with $-i$ we get

$$
\begin{aligned}
\underline{E} & =\frac{-\underline{k} \times \underline{B}}{(\omega \mu \varepsilon-i \mu \sigma)} \\
& =\frac{-\omega \underline{k} \times \underline{B}}{\left(\omega^{2} \mu \varepsilon-i \mu \sigma \omega\right)} \\
\Rightarrow \underline{E} & =\frac{\omega}{k^{2}} \underline{B} \times \underline{k} \quad \text { as required because } k^{2}=\omega^{2} \mu \varepsilon-i \mu \sigma \omega .
\end{aligned}
$$

The proof is thus more involved but the final appearance of this result is exactly the same as we had for free space.

