Answer to Electromagnetism Example Question 8

The surface charge density is given by the standard expression $\sigma_{b}=\underline{P} \cdot \hat{n}$.
In this case \underline{P} is clearly radially directed and so is $\underline{\hat{n}}$ as it is perpendicular to the surface of a sphere.

The unit vector in the radial direction can be written as

$$
\underline{\hat{n}}=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} \cdot(x \underline{\hat{\mathrm{i}}}+y \underline{\hat{\mathrm{j}}}+z \underline{\hat{\mathbf{k}}})
$$

$\therefore \sigma_{b}=\underline{P} \cdot \hat{n}=\frac{\mathrm{C}\left(x^{2}+y^{2}+z^{2}\right)}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{\mathrm{C} R^{2}}{R}=C R$ at the surface of the sphere.
Therefore the total charge appearing on the surface is just

$$
\sigma_{b} \times \text { area }=\mathrm{C} R \times 4 \pi R^{2}=4 \pi \mathrm{C} R^{3}
$$

In order to ensure overall charge neutrality it is then necessary to have a charge of $-4 \pi \mathrm{C} R^{3}$ within the interior of the sphere.

