Answer to Electromagnetism Example Question 7

a) The number of carbon atoms per m^{3} is

$$
N=\frac{3500}{12} \times 6 \times 10^{26}=1.75 \times 10^{29} \mathrm{~m}^{3}
$$

b) As $P_{o}=N p$ where p is the dipole moment of individual atoms then

$$
p=\frac{1.5 \times 10^{-7}}{1.75 \times 10^{29}}=8.57 \times 10^{-37} \mathrm{Cm}
$$

c) Carbon has a nucleus with charge $+6 e$ and surrounding electron charge $-6 e$. An estimate for the separation of the $+/$ - charge centres is obtained from

$$
p=s q \text { i.e. } 8.57 \times 10^{-37}=s .\left(6 \times 1.6 \times 10^{-19}\right)
$$

Thus $s=8.92 \times 10^{-19} \mathrm{~m}$, that is about $10^{-18} \mathrm{~m}$, a very small displacement!
d) We have that $J_{b}=\frac{\partial P}{\partial t}=\omega P_{o} \cos (\omega t)$ in this case.

The amplitude of the resultant polarisation current density oscillation is then just given by

$$
\omega P_{o}=2 \pi \times 10^{12} \times 1.5 \times 10^{-7}=9.42 \times 10^{5} \mathrm{Am}^{-2} .
$$

