Answer to Electromagnetism Example Question 6

a) \underline{B}_{o} is in the direction of $\underline{k} \times \underline{E}$ and hence in the direction of $\left(\begin{array}{l}+1 \\ -2 \\ +3\end{array}\right) \times\left(\begin{array}{c}-2 \\ -1 \\ 0\end{array}\right)=\left(\begin{array}{l}+3 \\ -6 \\ -5\end{array}\right)$. The unit vector in this direction is $\frac{1}{\sqrt{3^{2}+6^{2}+5^{2}}}\left(\begin{array}{l}+3 \\ -6 \\ -5\end{array}\right)=\frac{1}{\sqrt{70}}\left(\begin{array}{l}+3 \\ -6 \\ -5\end{array}\right)$.
We also know that $B_{o}=E_{o} / \mathrm{c}$ in free space and in this case

$$
E_{o}=\sqrt{2^{2}+1^{2}+0^{2}}=\sqrt{5} \mathrm{Vm}^{-1} .
$$

$\therefore \underline{B}_{o}=\frac{1}{\mathrm{c}} \cdot \sqrt{\frac{5}{70}}\left(\begin{array}{l}+3 \\ -6 \\ -5\end{array}\right)=\frac{0.267}{\mathrm{c}}\left(\begin{array}{l}+3 \\ -6 \\ -5\end{array}\right)=8.9 \times 10^{-10}\left(\begin{array}{l}+3 \\ -6 \\ -5\end{array}\right) \mathrm{T}$.
b) \underline{E}_{o} is in the direction of $\underline{B} \times \underline{k}$ and hence in the direction of $\left(\begin{array}{c}-2 \\ -1 \\ 0\end{array}\right) \times\left(\begin{array}{l}+1 \\ -2 \\ +3\end{array}\right)=\left(\begin{array}{l}-3 \\ +6 \\ +5\end{array}\right)$.

The unit vector in this direction is $\frac{1}{\sqrt{3^{2}+6^{2}+5^{2}}}\left(\begin{array}{l}-3 \\ +6 \\ +5\end{array}\right)=\frac{1}{\sqrt{70}}\left(\begin{array}{l}-3 \\ +6 \\ +5\end{array}\right)$.
We also know that $E_{o}=\mathrm{c} B_{o}$ in free space and that $B_{o}=\sqrt{5} \mathrm{~T}$.
$\therefore \underline{E}_{o}=\mathrm{c} \sqrt{\frac{5}{70}}\left(\begin{array}{l}-3 \\ +6 \\ +5\end{array}\right)=0.267 \mathrm{c}\left(\begin{array}{l}-3 \\ +6 \\ +5\end{array}\right)=8.01 \times 10^{7}\left(\begin{array}{l}-3 \\ +6 \\ +5\end{array}\right) \mathrm{Vm}^{-1}$.
c) In free space we have that the phase velocity $=\mathrm{c}=\frac{\omega}{k}, k=\frac{\omega}{\mathrm{c}}$.

In this case $\omega=2 \pi .10^{6}$ and so $k=\frac{2 \pi .10^{6}}{3 \times 10^{8}}=0.0209 \mathrm{~m}^{-1}$.
Normalising our \underline{k} direction vector we obtain

$$
\underline{k}=\frac{0.0209}{\sqrt{14}}\left(\begin{array}{l}
+1 \\
-2 \\
+3
\end{array}\right)=5.6 \times 10^{-3}\left(\begin{array}{l}
+1 \\
-2 \\
+3
\end{array}\right) \mathrm{m}^{-1} .
$$

