Answer to Electromagnetism Example Question 4

$\begin{aligned} \text { We have that } \nabla \cdot \underline{E} & =\left(\begin{array}{c}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z}\end{array}\right) \cdot\left(\begin{array}{l}E_{o x} \\ E_{o y} \\ E_{o z}\end{array}\right) e^{j\left(\omega t-k_{x} x-k_{y} y-k_{z} z\right)} \\ & =\left[-E_{o x} k_{x}-E_{o y} k_{y}-E_{o z} k_{z}\right] e^{j(\omega t-\underline{k} \cdot \underline{r})}\end{aligned}$
This can only $=0$ for all times t and at all positions \underline{r} provided that the term in square brackets $=0$.

Thus $\left(\begin{array}{l}E_{o x} \\ E_{o y} \\ E_{o z}\end{array}\right) \cdot\left(\begin{array}{l}k_{x} \\ k_{y} \\ k_{z}\end{array}\right)=0$ which requires that $\underline{E}_{o}($ and hence $\underline{E})$ and \underline{k} are perpendicular.
Similarly we have that $\nabla \cdot \underline{B}=\left(\begin{array}{c}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z}\end{array}\right) \cdot\left(\begin{array}{l}B_{o x} \\ B_{o y} \\ B_{o z}\end{array}\right) e^{j\left(\omega t-k_{x} x-k_{y} y-k_{z} z\right)}$

$$
=\left[-B_{o x} k_{x}-B_{o y} k_{y}-B_{o z} k_{z}\right] e^{j(\omega t-\underline{k} \underline{r})}
$$

Thus $\left(\begin{array}{l}B_{o x} \\ B_{o y} \\ B_{o z}\end{array}\right) \cdot\left(\begin{array}{l}k_{x} \\ k_{y} \\ k_{z}\end{array}\right)=0$ which requires that \underline{B}_{o} (and hence \underline{B}) and \underline{k} are also perpendicular.

