Answer to Electromagnetism Example Question 25

This is NOT meant to correspond to the result for any actual object - it's just a simple mathematical form to easily enable the calculation of R_{r}, W and D.

To find the total power radiated, P, we must integrate the time-averaged Poynting vector over a spherical surface surrounding and centred on the object:

$$
P=\int \underline{S}_{a v} \cdot d \underline{a}=C I_{o}^{2} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \frac{r^{2} \sin ^{2} \theta}{r^{2}} d \theta
$$

where, in spherical polars, $d \underline{a}=r^{2} \sin \theta d \theta d \phi \underline{r}$.
Thus we obtain

$$
P=C I_{o}^{2} \times 2 \pi \times \int_{0}^{\pi} \sin ^{2} \theta d \theta=C I_{o}^{2} \times 2 \pi \times \frac{\pi}{2}=C I_{o}^{2} \pi^{2}
$$

[The simple $\sin ^{2} \theta$ type integral was previously performed in doing Example Question 1.]

The radiation resistance is defined via the relationship:

$$
P=\frac{1}{2} I_{o}^{2} R_{r}
$$

which, in this case, means that $P=\frac{1}{2} I_{o}^{2} R_{r}=C I_{o}^{2} \pi^{2}$ or $R_{r}=2 C \pi^{2}=\underline{98.7} \Omega$ with $C=5 \Omega$ as given in the question.
$S_{a v}$ has a maximum in the equatorial plane where $\theta=\pi / 2$ and falls to half this peak value when $\theta=\pi / 6,5 \pi / 6$ when $\sin \theta=1 / 2$. This means that the beam width, $W=\underline{2 \pi / 3}$ or $\underline{120 \text { degrees. }}$

The directivity is given by $D=\frac{\text { peak power/area }}{\text { average power/area }}$.
The peak power/area is obtained in the equatorial plane when $\theta=\pi / 2, \sin \theta=1$ and $S_{a v}=\frac{5 I_{o}^{2}}{r^{2}}$.
The average power/area is just $\frac{\frac{1}{2} I_{o}^{2} R_{r}}{4 \pi r^{2}}$.
Thus $D=\frac{2 \times 5 I_{o}^{2} \times 4 \pi r^{2}}{r^{2} I_{o}^{2} R_{r}}=\frac{40 \pi}{R_{r}}$ and with $R_{\mathrm{r}}=98.7 \Omega$ this gives $\underline{D=1.27}$ somewhat smaller than the standard result for a Hertzian half-wave dipole of 1.5 or the halfwave dipole result of 1.64 as would be expected given the $\sin \theta$ dependence.

