Answer to Electromagnetism Example Question 23

In the time-dependent case we still have that

$$
\begin{equation*}
\nabla \cdot \underline{E}=\frac{\rho}{\varepsilon_{o}} \tag{ME1}
\end{equation*}
$$

but now (result obtained in lectures)

$$
\underline{E}=-\nabla V-\frac{\partial \underline{A}}{\partial t}
$$

Substitution of this in ME 1) leads to

$$
-\nabla^{2} V-\frac{\partial}{\partial t} \nabla \cdot \underline{A}=\frac{\rho}{\varepsilon_{o}}
$$

If we then use the Lorentz gauge with $\nabla \cdot \underline{A}=-\mu_{o} \varepsilon_{o} \frac{\partial V}{\partial t}$ as given in the question we obtain, after rearrangement, our first required result that

$$
\nabla^{2} V=-\frac{\rho}{\varepsilon_{o}}+\mu_{o} \varepsilon_{o} \frac{\partial^{2} V}{\partial t^{2}}
$$

We also have, as usual, from ME 3) that

$$
\nabla \cdot \underline{B}=0 \Rightarrow \underline{B}=\nabla \times \underline{A}
$$

Substituting this in ME 4) we obtain

$$
\nabla \times \underline{B}=\nabla \times \nabla \times \underline{A}=\nabla(\nabla \cdot \underline{A})-\nabla^{2} \underline{A}=\mu_{o} \underline{J}+\mu_{o} \varepsilon_{o} \frac{\partial \underline{E}}{\partial t}
$$

Substituting our Lorentz gauge expression for $\nabla \cdot \underline{A}$ and and again employing $\underline{E}=-\nabla V-\frac{\partial \underline{A}}{\partial t}$ this leads to

$$
\nabla\left(-\mu_{o} \varepsilon_{o} \frac{\partial V}{\partial t}\right)-\nabla^{2} \underline{A}=\mu_{o} \underline{J}+\mu_{o} \varepsilon_{o} \frac{\partial}{\partial t}\left(-\nabla V-\frac{\partial \underline{A}}{\partial t}\right)
$$

Our judicious choice of the Lorentz gauge leads to cancellation of the term $-\mu_{o} \varepsilon_{o} \frac{\partial}{\partial t} \nabla V$ which appears on both sides of our eqn. leading to the second of our desired results, after rearrangement, that

$$
\nabla^{2} \underline{A}=-\mu_{o} \underline{J}+\mu_{o} \varepsilon_{o} \frac{\partial^{2} \underline{A}}{\partial t^{2}}
$$

