Answer to Electromagnetism Example Question 17

We can use the result that $H=\frac{E n}{c \mu}, E=\frac{c \mu H}{n}$ to rewrite 1) as

$$
\frac{c \mu_{1} H_{O I}}{n_{1}}+\frac{c \mu_{1} H_{O R}}{n_{1}}=\frac{c \mu_{2} H_{O T}}{n_{2}}
$$

To find $\frac{H_{O R}}{H_{O I}}$ we rearrange 3) to give

$$
H_{O T}=\frac{n_{2} \mu_{1}}{n_{1} \mu_{2}}\left(H_{O I}+H_{O R}\right)
$$

which can then be substituted in 2) leading to

$$
H_{O I} \cos \theta_{I}-H_{O R} \cos \theta_{I}=\frac{n_{2} \mu_{1}}{n_{1} \mu_{2}}\left(H_{O I}+H_{O R}\right) \cos \theta_{T}
$$

After rearrangement,

$$
\begin{aligned}
& H_{O I}\left[\cos \theta_{I}-\frac{n_{2} \mu_{1}}{n_{1} \mu_{2}} \cos \theta_{T}\right]=H_{O R}\left[\cos \theta_{I}+\frac{n_{2} \mu_{1}}{n_{1} \mu_{2}}\right] \\
\therefore & \frac{H_{O R}}{H_{O I}}=\frac{\cos \theta_{I}-\frac{n_{2} \mu_{1}}{n_{1} \mu_{2}} \cos \theta_{T}}{\cos \theta_{I}+\frac{n_{2} \mu_{1}}{n_{1} \mu_{2}} \cos \theta_{T}}=\frac{\frac{n_{1}}{\mu_{1}} \cos \theta_{I}-\frac{n_{2}}{\mu_{2}} \cos \theta_{T}}{\frac{n_{1}}{\mu_{1}} \cos \theta_{I}+\frac{n_{2}}{\mu_{2}} \cos \theta_{T}}
\end{aligned}
$$

To find $\frac{H_{O T}}{H_{O I}}$ we rearrange 3) to give

$$
H_{O R}=\frac{n_{1}}{c \mu_{1}}\left(\frac{c \mu_{2}}{n_{2}} H_{O T}-\frac{c \mu_{1}}{n_{1}} H_{O I}\right) \text { which can then be substituted in 2) }
$$

leading to

$$
H_{O I} \cos \theta_{I}-\left[\frac{n_{1} \mu_{2} H_{O T}}{\mu_{1} n_{2}}-H_{O I}\right] \cos \theta_{I}=H_{O T} \cos \theta_{T}
$$

After rearrangement,

$$
\begin{gathered}
H_{O I}\left[\cos \theta_{I}+\cos \theta_{I}\right]=H_{O T}\left[\cos \theta_{T}+\frac{n_{1} \mu_{2}}{n_{2} \mu_{1}} \cos \theta_{I}\right] \\
\therefore \frac{H_{O T}}{H_{O I}}=\frac{2 \cos \theta_{I}}{\cos \theta_{T}+\frac{n_{1} \mu_{2}}{n_{2} \mu_{1}} \cos \theta_{I}}=\frac{2 \frac{n_{2}}{\mu_{2}} \cos \theta_{I}}{\frac{n_{1}}{\mu_{1}} \cos \theta_{I}+\frac{n_{2}}{\mu_{2}} \cos \theta_{T}}
\end{gathered}
$$

