In this case there is no suggestion of any frequency dependent effects so we can assume that all measurements are static, $\omega=0$.

The expression given (which has been encountered in lectures) $\Rightarrow \chi \propto 1 / T$ so we should add an additional line to the table:

T	500	333	250	200
$1 / \mathrm{T}$	0.0020	0.0030	0.0040	0.0050
χ	0.0032	0.0042	0.0052	0.0062

A plot of χ versus $1 / \mathrm{T}$ is clearly going to give a straight line in this case.

The gradient of the line is equal to $\frac{N p_{0}^{2}}{3 k_{B} \varepsilon_{0}}=1$ in this case (it's so obvious that it's not even necessary to plot it) and the χ-axis intercept indicates contributions to χ which don't have any temperature dependence (i.e. electronic, ionic).

Plugging in the values then gives $p_{0}^{2}=3 k_{B} \varepsilon_{o} / N \Rightarrow p_{0}=3.6 \times 10^{-30} \mathrm{Cm}$ with $p_{0}=q s=1.6 \times 10^{-19} \mathrm{~s}$ (1 electron assumed transferred from H to Cl) this gives

