a) $J_{(\text {bound })}=\frac{\partial P}{\partial t}=\frac{\partial}{\partial t}\left(\varepsilon_{0} \chi E\right)=\varepsilon_{0} \chi j \times 1000 \pi \times 3.5 e^{j \omega t}$
(In this case $\omega=2 \pi \times 500 \mathrm{~s}^{-1}, 500 \mathrm{~Hz}$ oscillation.)
$\varepsilon^{*}=\varepsilon^{\prime}-j \varepsilon^{\prime \prime}=1+\chi, \chi=\varepsilon^{*}-1=6.94-2.51 j$
The amplitude of the current density is then:

$$
\left|\varepsilon_{0} \times(6.94-2.51 j) \times 1000 \pi \times 3.5\right|=8.85 \times 10^{-12} \times 7.38 \times 1000 \pi \times 3.5=\underline{\underline{7.18 \times 10^{-7}} \mathrm{Am}^{-2}[2 \text { marks }] ~}
$$

b) The current amplitude is $7.18 \times 10^{-7} \times$ area $=7.18 \times 10^{-7} \times 25 \times 10^{-4}=1.80 \times 10^{-9} \mathrm{~A}$
c) $R=\frac{1}{\omega \varepsilon^{\prime \prime} C_{0}}=\frac{d}{\omega \varepsilon^{\prime \prime} \varepsilon_{0} A}=\frac{2 \times 10^{-3}}{1000 \pi \times 2.51 \times 8.85 \times 10^{-12} \times 25 \times 10^{-4}}$

$$
=\underline{\underline{1.15 \times 10^{7}} \Omega}
$$

d) By definition, the loss tangent is just $\tan \delta=\frac{\varepsilon^{\prime \prime}}{\varepsilon^{\prime}}=\frac{2.51}{7.94}=\underline{\underline{0.316}}$
e) The power dissipation is given by either $W=\frac{1}{2} \operatorname{Re}\left[I^{*} V\right]$ (longer approach), or,

$$
W=\frac{V_{0}^{2}}{2 R}
$$

where V_{0} is the amplitude of the voltage across the slab, $V_{0}=E_{0} d$ where $E_{0}=3.5 \mathrm{Vm}^{-1}$

$$
\therefore V_{0}=3.5 \times 2 \times 10^{-3} \mathrm{v}
$$

Thus $W=\frac{\left(3.5 \times 2 \times 10^{-3}\right)^{2}}{2 \times 1.146 \times 10^{7}}=\underline{\underline{2.14 \times 10^{-12}}} \mathrm{~W}$

