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Dielectrics resumé 
 
DIELECTRIC RESPONSE 
 
Review of simple polarisation concepts     –   dipole moment  p = qs (po = qs), polarisation P = Np (N is 
the number of dipoles per unit volume), surface charge density σb = P.n, volume charge density ρb = -
∇ .P, polarisation current density  Jb = ∂P/∂t, polarisation P = εoχE for a linear, isotropic homogeneous 
medium where χ is the susceptibility. 
 
Equivalent circuit model of a dielectric. C* = ε*Co = (ε′ - jε′′ )Co with  ε′ and ε′′  ( = 1/(ωRCo), the real 
and imaginary components of the relative permittivity as a function of frequency, ω. The loss tangent, 
tanδ = ε′′ /ε′. ε′′  and more importantly, tanδ is important for energy losses within the dielectric. 
 
Resonance (damped simple harmonic motion) model for the electronic component (the only component 
present at optical frequencies) of the contribution to the polarisation / susceptibility  as a function of 
frequency gives  
 

 
where γ is an appropriate energy dissipation term. ωo lies in the UV region of the spectrum. ε′ = 1 + χr 
has typical resonance structure near ωo and ε′′  = χI peaks a little below ωo. In relation to optical 
measurements ε′ = nr

2 – ni
2 , ε′′  = 2nrnI where n* = nr – jnI is the complex refractive index. nr = c/vph , nI 

= cα/(2ω) where α is the absorption constant. 
 
A similar resonance model for the ionic contribution to χ has structure in the IR region of the spectrum 
due to the slower response of the ions compared to that of the electrons. 
 
The dipolar contribution to the polarisation and static (ω = 0) susceptibility, due to the reorientation of 
permanent dipoles in the presence of an electric field, is 
 

 
where Psat is the (maximum) saturation polarisation at a given temperature T (provided that  poE << 
kBT, otherwise a full Langevin function integration must be performed ). When considering the 
frequency dependence, the contribution to the susceptibility is 

 
where τ is the relaxation time. The form of this result is typical of that for a whole range of relaxation 
processes. A single such process gives a response in the electrical frequency regime which may be well 
represented by the Debye equations: 

 
where εs and ε∞ are the static and high (cf electrical) frequency permittivities respectively. For all such 
relaxation processes ε′′  peaks at the frequency ω  = 1/τ and the peak in tanδ occurs when ω = 
(εs/ε∞)1/2/τ. In the electrical frequency regime the electronic and ionic contributions to the real part of 
the permittivity may be considered constant and the imaginary contributions are zero. 
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A very useful connection between the real and imaginary components of the dielectric reponse is given 
by the Kramers-Kronig relations which state, in the electrical frequency regime, that: 
 

 
In practice, the integral is only carried out over the electrical frequency range in which the relaxation 
process contributions to the permittivity are significant. If ε∞ is replaced by 1 then the results apply to 
the whole frequency range to above UV where even the electronic contributions to the polarisation 
vanish. 
 
LOCAL FIELD EFFECTS 
 
In order to make better connection between the macroscopic measurements of permittivity and the 
microscopic scale induced dipole moment of a particular dipole it is convenient to express the local 
electric field experienced by a particular dipole as Elocal = EA + ELOR + ESPH . 
Elocal is the actual electric field seen by a dipole and EA, ELOR and ESPH are respectively the average 
macroscopic electric field, the field at the centre of an imaginary spherical cavity within the dielectric 
centred on the dipole in question and  the field due to the detailed, microscopic calculation of the field 
at the centre of the material “removed” from the cavity (excluding the central dipole). For a “large” 
sphere it is found by using a macroscopic continuum integration that ELOR = P/3εo . For a cubic system 
it can be shown that ESPH = 0 so we have that Elocal = EA + P/3εo . Given that P = εoχEA we then have 
that Elocal = (1 + χ/3)EA = (ε + 2)EA/3. Defining a polarisability, α,  via p = αElocal we then have the 
Clausius-Mossotti result that 

 
 
the latter applying if more than one type of contribution is present. In the case of a monatomic low 
pressure gas α and χ are related via α = εoχ/N. 
 
PIEZO-, FERRO- AND PYROELECTRIC MATERIALS 
 
When a piezoelectric (PZ) material is subjected to mechanical strain this results in the appearance of a 
surface polarisation and hence induced electric field. Alternatively, if such a material is subjected to an 
electric field this results in the appearance of polarisation and there is an induced mechanical strain. To 
exhibit this effect there must be no centre of inversion - the material must be non-centrosymmetric. 20 
out of 32 crystal classes show this effect. (Ionic structures which do have inversion symmetry can, 
however, exhibit the 2nd order electrostriction effect - an applied E field leads to a change in length ∝  
E2.) For PZ materials we define a piezoelectric coefficient, g, via E = -gT where T is the stress in 
pascals and a good value is g ~ 2 × 10-2 m2C-1. In terms of the piezoelectric charge constant, d,  we also 
have S = d.E where S is the strain and a good value of d is ~ 3 × 10-10 mV-1. Given that S = sT where s 
is the compliance (the reciprocal of Young's modulus) g and d are then not independent. In practice, the 
PZ response is very much direction dependent. Examples of PZ materials are: Rochelle salt, PZT (lead 
zirconium titanate), ADP (ammonium dihydrogen phosphate), KDP (potassium dihydrogen phosphate) 
and quartz. Applications include: transducers, ultrasonic generators, resonators, displacement control, 
high voltage generation, sensors and motors. The bilaminar flexure unit (bimorph) is used in strain 
gauges, accelerometers and PZ motors. 
 
Ferroelectric materials, which have a domain structure, are able to exhibit a permanent polarisation (P 
without E) which can be altered using an E field. In this case P depends on the history of the sample ⇒  
hysteresis. The "spontaneous” polarisation, Ps, vanishes at the ferroelectric Curie point. Also of 
importance are the remanent polarisation, Pr,  and the coercive field, Ec. It is not straightforward to 
define ε or χ for such a system but at the Curie point values in excess of 104 can be obtained. TGS 
(triglycine sulphate), KDP, barium and strontium titanate and Rochelle salt are examples of 
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ferroelectric materials. A number of electro-optic applications are possible for these materials. FRAM's 
and FLCD's have been produced. 
 
Ferroelectrics are a subset of pyroelectric materials (10 crystal classes) which are, in turn a subset of 
the PZ materials. The pyroelectrics exhibit the property that a change in polarisation occurs in response 
to a change in temperature. The pyroelectric coefficient, pc, is defined via ∆P = pc∆T where ∆P is the 
change in polarisation and ∆T the change in temperature. TGS is an example of a material with a good 
response - at 35° C pc = 5.5 × 10-4 Cm-2 K-1. Pyroelectrics are mainly used as detectors of  IR radiation. 
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